Chapter 1: Introduction to Data Analytics
-
1.1) Definition and Scope of Data Analytics
-
1.2) Types of Data Analytics
-
Descriptive, Diagnostic, Predictive, Prescriptive
-
-
1.3) Importance in Decision Making
-
1.4) Data Analytics Life Cycle
-
1.5) Tools for Data Analytics
-
Python, R, Excel, Power BI
-
Chapter 2: Data Collection and Cleaning
-
2.1) Data Collection Techniques
-
Surveys, Web Scraping, APIs
-
-
2.2) Data Types and Sources
-
Structured, Semi-structured, Unstructured
-
-
2.3) Data Cleaning Techniques
-
Handling Missing Values
-
Outlier Detection and Treatment
-
Duplicate Removal and Data Consistency
-
-
2.4) Data Transformation
-
Normalization and Standardization
-
Chapter 3: Data Exploration and Visualization
-
3.1) Exploratory Data Analysis (EDA)
-
3.2) Summary Statistics
-
Mean, Median, Mode, Variance, Standard Deviation
-
-
3.3) Data Visualization Techniques
-
Bar Charts, Histograms, Boxplots, Scatterplots
-
-
3.4) Visualization Tools
-
Python (Matplotlib, Seaborn), Tableau, Power BI
-
Chapter 4: Statistical Foundations for Data Analytics
-
4.1) Probability Concepts
-
Conditional Probability, Bayes’ Theorem
-
-
4.2) Distributions
-
Normal, Binomial, Poisson
-
-
4.3) Sampling Techniques
-
Random, Stratified, Cluster Sampling
-
-
4.4) Hypothesis Testing
-
Null and Alternative Hypothesis
-
t-test, z-test, Chi-square test
-
Chapter 5: Predictive Analytics and Machine Learning
-
5.1) Introduction to Predictive Modeling
-
5.2) Regression Techniques
-
Linear Regression, Multiple Regression
-
-
5.3) Classification Techniques
-
Decision Trees, K-Nearest Neighbors (KNN), Logistic Regression
-
-
5.4) Model Evaluation
-
Confusion Matrix, Accuracy, Precision, Recall, F1 Score
-
Chapter 6: Data Mining Techniques
-
6.1) Introduction to Data Mining
-
6.2) Clustering
-
K-Means, Hierarchical Clustering
-
-
6.3) Association Rule Mining
-
Apriori Algorithm, Support, Confidence, Lift
-
-
6.4) Anomaly Detection
Chapter 7: Time Series Analysis
-
7.1) Components of Time Series
-
Trend, Seasonality, Noise
-
-
7.2) Moving Averages and Smoothing Techniques
-
7.3) Forecasting Models
-
AR, MA, ARMA, ARIMA
-
-
7.4) Applications in Industry
Chapter 8: Big Data Analytics
-
8.1) Introduction to Big Data
-
5Vs: Volume, Velocity, Variety, Veracity, Value
-
-
8.2) Hadoop Ecosystem
-
HDFS, MapReduce
-
-
8.3) Apache Spark Basics
-
8.4) NoSQL Databases
-
MongoDB, Cassandra
-
Chapter 9: Tools and Technologies
-
9.1) Data Analytics Tools
-
R, Python, Excel, Tableau
-
-
9.2) Data Processing Libraries
-
NumPy, Pandas, Scikit-learn
-
-
9.3) Data Visualization Tools
-
Power BI, Matplotlib, Seaborn
-
-
9.4) Case Study with Jupyter Notebooks
Chapter 10: Applications and Case Studies
-
10.1) Data Analytics in Business
-
10.2) Analytics in Healthcare
-
10.3) Financial Analytics
-
10.4) Social Media Analytics
-
10.5) Ethical and Legal Issues in Data Analytics
-
Data Privacy, GDPR, Bias in Data
-