Chapter 1: Introduction to Data Science
-
1.1) What is Data Science?
-
1.2) Evolution of Data Science
-
1.3) Components of Data Science
-
Data Engineering
-
Machine Learning
-
Business Intelligence
-
-
1.4) Data Science vs. Data Analytics vs. Big Data
-
1.5) Applications of Data Science
-
1.6) Roles in a Data Science Project
-
Data Scientist, Data Analyst, Data Engineer
-
Chapter 2: Data Collection and Preprocessing
-
2.1) Data Types and Sources
-
Structured, Unstructured, Semi-structured
-
APIs, Web Scraping, Databases
-
-
2.2) Data Cleaning
-
Handling Missing Values
-
Outlier Detection and Treatment
-
Data Type Conversion
-
-
2.3) Data Transformation
-
Normalization and Standardization
-
Encoding Categorical Variables
-
-
2.4) Feature Engineering
-
Feature Creation
-
Feature Selection
-
Dimensionality Reduction
-
Chapter 3: Exploratory Data Analysis (EDA)
-
3.1) Importance of EDA
-
3.2) Descriptive Statistics
-
Mean, Median, Mode, Variance, Skewness
-
-
3.3) Data Visualization Techniques
-
Histograms, Boxplots, Scatterplots, Heatmaps
-
-
3.4) Correlation and Covariance
-
3.5) Tools for EDA
-
Python (Pandas, Seaborn, Matplotlib)
-
Jupyter Notebook
-
Chapter 4: Probability and Statistics for Data Science
-
4.1) Probability Basics
-
Conditional Probability
-
Bayes’ Theorem
-
-
4.2) Probability Distributions
-
Normal, Binomial, Poisson
-
-
4.3) Inferential Statistics
-
Sampling
-
Hypothesis Testing
-
Confidence Intervals
-
-
4.4) Statistical Tests
-
t-test, Chi-Square Test, ANOVA
-
Chapter 5: Machine Learning for Data Science
-
5.1) Supervised vs. Unsupervised Learning
-
5.2) Regression Algorithms
-
Linear and Logistic Regression
-
-
5.3) Classification Algorithms
-
Decision Trees, KNN, SVM, Naive Bayes
-
-
5.4) Clustering Techniques
-
K-Means, Hierarchical Clustering
-
-
5.5) Model Evaluation Metrics
-
Accuracy, Precision, Recall, F1-score, AUC
-
Chapter 6: Data Visualization and Communication
-
6.1) Principles of Good Visualization
-
6.2) Dashboard Design
-
6.3) Data Storytelling
-
6.4) Tools
-
Tableau, Power BI
-
Python Libraries: Seaborn, Plotly, Bokeh
-
Chapter 7: Big Data and Cloud Computing Basics
-
7.1) Introduction to Big Data
-
Characteristics (Volume, Velocity, Variety)
-
-
7.2) Hadoop Ecosystem
-
HDFS, MapReduce, YARN
-
-
7.3) Spark Overview
-
7.4) Introduction to Cloud Platforms
-
AWS, Google Cloud, Azure
-
-
7.5) Cloud Tools for Data Science
-
Colab, Sagemaker, BigQuery
-
Chapter 8: Case Studies and Applications
-
8.1) Data Science in Healthcare
-
8.2) Data Science in Finance
-
8.3) Recommendation Systems
-
8.4) Social Media and Text Analytics
-
8.5) Ethics and Bias in Data Science