Chapter 1: Introduction to Machine Learning
-
1.2) Types of Learning:-
-
1.4) Key Elements of Machine Learning
-
1.5) Challenges in ML
-
1.6) ML vs Traditional Programming
Chapter 2: Supervised Learning
-
2.1) Overview of Supervised Learning
-
2.2) Linear Regression
-
Simple Linear Regression
-
Multiple Linear Regression
-
Cost Function and Gradient Descent
-
-
2.3) Logistic Regression
-
Sigmoid Function
-
Decision Boundary
-
-
2.4) Support Vector Machines (SVM)
-
Margin, Hyperplane
-
Kernel Trick
-
-
2.5) Decision Trees
-
ID3, C4.5
-
Gini Index, Information Gain
-
-
2.6) K-Nearest Neighbors (KNN)
-
2.7) Evaluation Metrics
-
Confusion Matrix
-
Accuracy, Precision, Recall, F1-Score
-
ROC, AUC
-
Chapter 3: Unsupervised Learning
-
3.1) Clustering
-
K-Means Clustering
-
Hierarchical Clustering
-
DBSCAN
-
-
3.2) Dimensionality Reduction
-
PCA (Principal Component Analysis)
-
LDA (Linear Discriminant Analysis)
-
-
3.3) Association Rule Mining
-
Apriori Algorithm
-
FP-Growth Algorithm
-
Support, Confidence, Lift
-
Chapter 4: Ensemble Learning
-
4.1) Bagging
-
Bootstrap Aggregating
-
Random Forest
-
-
4.2) Boosting
-
AdaBoost
-
Gradient Boosting
-
XGBoost
-
-
4.3) Stacking
Chapter 5: Neural Networks and Deep Learning
-
5.1) Perceptron and Multilayer Perceptron (MLP)
-
5.2) Activation Functions
-
Sigmoid, Tanh, ReLU
-
-
5.3) Backpropagation Algorithm
-
5.4) Introduction to Deep Learning
-
5.5) Convolutional Neural Networks (CNNs) – Basics
-
5.6) Recurrent Neural Networks (RNNs) – Basics
Chapter 6: Reinforcement Learning
-
6.1) Introduction to RL
-
6.2) Markov Decision Processes (MDP)
-
6.3) Q-Learning
-
6.4) Exploration vs Exploitation
-
6.5) Applications of RL
Chapter 7: Model Selection and Evaluation
-
7.1) Bias-Variance Tradeoff
-
7.2) Cross-Validation Techniques
-
7.3) Hyperparameter Tuning
-
7.4) Grid Search vs Random Search
-
7.5) Overfitting and Underfitting
Chapter 8: Recent Trends and Applications
-
8.1) Transfer Learning
-
8.2) AutoML
-
8.3) Federated Learning
-
8.4) ML in Industry Applications
-
Healthcare
-
Finance
-
Robotics
-
Natural Language Processing (NLP)
-